Deeply-Learned Spatial Alignment for Person Re-Identification
نویسندگان
چکیده
منابع مشابه
Relaxed Pairwise Learned Metric for Person Re-identification
Matching persons across non-overlapping cameras is a rather challenging task. Thus, successful methods often build on complex feature representations or sophisticated learners. A recent trend to tackle this problem is to use metric learning to find a suitable space for matching samples from different cameras. However, most of these approaches ignore the transition from one camera to the other. ...
متن کاملPedestrian Alignment Network for Large-scale Person Re-identification
Person re-identification (person re-ID) is mostly viewed as an image retrieval problem. This task aims to search a query person in a large image pool. In practice, person re-ID usually adopts automatic detectors to obtain cropped pedestrian images. However, this process suffers from two types of detector errors: excessive background and part missing. Both errors deteriorate the quality of pedes...
متن کاملDeep Spatial Feature Reconstruction for Partial Person Re-identification: Alignment-Free Approach
Partial person re-identification (re-id) is a challenging problem, where only several partial observations (images) of people are available for matching. However, few studies have provided flexible solutions to identifying a person in an image containing arbitrary part of the body. In this paper, we propose a fast and accurate matching method to address this problem. The proposed method leverag...
متن کاملMulti-Channel Pyramid Person Matching Network for Person Re-Identification
In this work, we present a Multi-Channel deep convolutional Pyramid Person Matching Network (MC-PPMN) based on the combination of the semantic-components and the colortexture distributions to address the problem of person reidentification. In particular, we learn separate deep representations for semantic-components and color-texture distributions from two person images and then employ pyramid ...
متن کاملDeep-Person: Learning Discriminative Deep Features for Person Re-Identification
Recently, many methods of person re-identification (ReID) rely on part-based feature representation to learn a discriminative pedestrian descriptor. However, the spatial context between these parts is ignored for the independent extractor on each separate part. In this paper, we propose to apply Long Short-Term Memory (LSTM) in an end-to-end way to model the pedestrian, seen as a sequence of bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2945353